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Abstract

Normalization by evaluation is a way to exploit the implementa-
tion’s language computing capabilities to perform normalization of open
lambda terms in a big step fashion. Using different languages or differ-
ent crowbars to leverage their respective reduction mechanisms, one can
therefore get different degrees of normalization; be it either the reduction
strategies considered or the shape of what ought to be a normal form that
varies.

In this document, we build different models (these are the crowbars
we make use of to attain the available computing resources) in which we
can give denotational semantics of our programs. We then characterize
the equational theories they decide.

The implementation of the described material is available on github:
https://github.com/gallais/agda-nbe
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the setting

This work is to be read with a constructive setting in mind: definitions cor-
respond either to datatype declarations or total functions in an appropriate
intensional type-theory (e.g. Martin Löf’s type theory[17]) while proofs are
algorithm turning their hypothesis into their conclusions. As a consequence,
somme lemmas will be named and used as functions later on.

In particular, we have formalized all the notions and proofs described here
in Agda[19], a proof assistant based on Martin Löf’s type theory.

1.1 The calculus

The studied calculus is pretty similar to Pierre Boutillier’s[7]; the main differ-
ence being the addition of a fold operation as well as append for lists and the
extension of the equational theory to support map-fold-append interactions.

Definition Contexts are snoc lists with constructors ε for the empty context
and ¨ for extending and already existing context. The notion of order-
sensitive context inclusion is defined inductively by the following rules.

base : ε Ď ε
pr : Γ Ď ∆

pop! pr : Γ ¨ σ Ď ∆ ¨ σ

pr : Γ Ď ∆

step pr : Γ Ď ∆ ¨ σ

Inclusion obviously is reflexive and transitive and these notions play nicely
together: contexts and proofs of inclusion form a category.

Definition This simply-typed calculus is equipped with finite types indexed
by (a finite set of) base types they are allowed to mention, containing unit
and closed under product, list and arrow. This is exactly what the following
formation rules describe:

n : N
typen : Set

k : Finn
‘b k : typen

σ : typen τ : typen
σ ‘̂ τ : typen

‘1 : typen
σ : typen

‘list σ : typen

σ : typen τ : typen
σ ‘Ñ τ : typen

Definition Terms are described as correct typing derivations in an intuition-
istic sequent calculus fashion.

Γ: Conptypenq σ : typen
Γ $ σ : Set

On top of the usual (potentially infix) constructors for variables (‘v), lambda
abstractions (‘λ), application (‘$), lists (‘rs and ‘:: ), pairs ( ‘, and the cor-
responding projections ‘π1 and ‘π2), the calculus has special constructors for
distinguished operations:
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1.2. THE NOTION OF EQUALITY 3

xs ys : Γ $ ‘list σ

xs ‘̀ ` ys : Γ $ ‘list σ

f : Γ $ σ ‘Ñ τ xs : Γ $ ‘list σ

‘mappf, xsq : Γ $ ‘list τ

c : Γ $ σ ‘Ñ τ ‘Ñ τ n : Γ $ τ xs : Γ $ ‘list σ

‘foldpc, n, xsq : Γ $ τ

Context inclusions quite naturally induce a functorial operation on terms:
weakening. The weakening induced by the identity inclusion is the identity
function and composition of weakenings is quite obviously the weakening in-
duced by the composition of the corresponding context inclusions. Throughout
the document, they will be mostly left implicit.

The pointwise extension of the well-typed terms’ definition to contexts cor-
responds to the notion of parallel substitution.

∆ $ε Γ “

"

J if Γ “ ε
∆ $ε Γ1 ˆ∆ $ σ if Γ “ Γ1 ¨ σ

These substitutions are the morphisms of a category whose objects are
terms and where composition ρ ’ ρ1 is the pointwise application of ρ on the
terms defining ρ1.

1.2 The notion of equality

The notion of equality used for this calculus is the congruence closure of a
typed reduction relation combining computational and standardization steps.

β and ι reductions are concerned with the computations triggered by putting
a constructor face to face with an eliminator. They are nowhere revolutionary
enough to be worth describing here in more details.

η reductions on the other hand deal with standardizations; in other words
η rules are here to ensure that terms can be given a canonical form mostly
determined by their type. They can morally be separated in two sets.

The first set of such rules describes canonical constructors: the term for
a function should start with a λ-abstraction hence the typed reduction rule
Γ $ σ ‘Ñ τ Q t η ‘λpt ‘$ ‘v 0q, the inhabitant of a product type should be a
pair therefore Γ $ σ ‘̂ τ Q t ηp‘π1 t ‘, ‘π2 tq just like any inhabitant of unit
should be its canonical inhabitant: Γ $ ‘1 Q t η tt.

The second set of rules is a bit less standard: it internalizes equations which
are usually left in the propositional equality. They can indeed be proved by
a simple induction. The reader might recognizes optimizing transformations
(or their converse) used when compiling functional programs. The first batch
deals with the functoriality of ‘list and the corresponding lifting operation
‘map acting on functions.

Γ $ ‘list σ Q ‘mappg, ‘mappf, xsqq η ‘mappg ¨ f, xsq

Γ $ ‘list σ Q xs η ‘mappid, xsq

The second one is taking care of the monoidal structure built by the append
function; it internalizes the associativity of ‘̀ ` and the existence of a right
unit ‘rs (which is also a left unit thanks to ι rules).
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Γ $ ‘list σ Q pxs ‘̀ ` ysq ‘̀ ` zs η xs ‘̀ ` pys ‘̀ ` zsq

Γ $ ‘list σ Q xs η xs ‘̀ ` ‘rs

Finally the last one explains how the functor interacts with the monoidal
structure.

Γ $ ‘list σ Q ‘mappf, xs ‘̀ ` ysq η ‘mappf, xsq ‘̀ ` ‘mappf, ysq

Sanity check

One easy sanity check one can perform is to write an embedding of the calculus
in a pre-existing sound type-theory and to show that the reduction relation is
compatible with the propositional equality in this theory. This is done in three
steps: one starts by giving an interpretation of types of the calculus as sets
in the target type theory; a well-typed interpretation of terms comes next and
finally one has to establish a soundness proof showing that elements related by
the reduction relation are provably equal in the type theory.

In the present case, it is quite easy to implement this sanity check in an
extensional type theory1 (cf. page 24). Once the reader is confident that the
described theory somehow makes sense, she can move on to see how to decide
it.

1.3 Deciding equality of terms

The reduction relation given for this calculus clearly is not strongly normaliz-
ing because of the presence of various η rules allowing to create new redexes
by artifically expanding stuck eliminations2. As a consequence, testing equal-
ity by iterating reduction steps until normal forms –which can be compared
syntactically– are reached is not a solution. There are a couple of different
ways to deal with this problem.

One may want to work on pairs of terms and perform successive weak-head
reductions on both elements until either the two head symbols are distincts
or the equation is trivially true. This technique has been showcased both by
Grégoire and Leroy[14] throught compilation of terms to a bytecode machine
derived from Ocaml’s ZAM and Abel, Coquand and Dybjer[4] whose algorithm
works directly on typable terms but is yet to be proven terminating.

Or one can notice that even if the calculus is not strongly normalizing,
it does enjoy unique βι-normal η-long forms which can be reached by cleverly
applying a deterministic reduction strategy to the terms. It is therefore possible
to stick to the approach involving separate normalization of the terms followed
by a syntactical check. One way to do so is to use hereditary substitutions
as did Abel or Keller and Altenkirch in their respective formalizations[1, 16].
Another one uses the typing information available to build semantical objects
where reductions just happen. This is our preferred choice.

1We used Agda extended with a postulate stating extensional equality for non-dependent
functions in our formalization.

2On top of the traditional f ‘$x ηp‘λ .f ‘$ ‘v 0q ‘$x β f ‘$x, the reader could think
of e.g. ‘mappf, xsq η ‘mappf, xs ‘̀ ` ‘rsq η ‘mappf, xsq ‘̀ ` ‘mappf, ‘rsq ι ‘mappf, xsq ‘̀ ` ‘rs
which is non-terminating and growing!
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Type directed partial evaluation

Type directed partial evaluation is used as a way to get these canonical forms
by using the evaluation mechanism of the host language whilst exploiting the
available type information to retrieve terms from the semantical objects. It
was introduced by Berger and Schwichtenberg[6] in order to have an efficient
normalization procedure for lego. It has since been largely studied in different
settings:

Danvy’s lecture notes[13] review its foundations and presents its applica-
tions as a technique to get rid of static redexes when compiling a program.
It also discusses various refinements of the näıve approach such as the intro-
duction of let bindings to preserve a call-by-value semantics or the addition of
extra reduction rules3 to get cleaner code generated.

T. Coquand and Dybjer[10] introduced a glued model recording the partial
application of combinators in order to be able to build the reification procedure
for a combinatorial logic. In this case the naive approach is indeed problematic
given that the SK structure is lost when interpreting the terms in the näıve
model and is impossible to get back. This idea was the missing bit allowing us
to get a model for weak-head normalization.

C. Coquand[9] showed in great details how to implement and prove sound
and complete an extension of the usual algorithm to a simply-typed lambda
calculus with explicit substitutions. This development guided our correctness
proofs.

More recently Abel et al.[2, 3] built extensions able to deal with a variety of
type theories and last but not least Ahman[12] explained how to treat calculi
equipped with algebraic effects.

3E.g. n`0 n in a calculus where ` is defined by case analysis on the first argument
and this expression is therefore stuck.



weak head normalization

Reduction to weak-head normal forms rather than normal forms is the exe-
cution model of lazy languages (e.g. Haskell) and allows to deal with infinite
objects and potential non termination quite liberally. It is also used in total
languages such as Coq in order to have a cheap convertibility check: two ele-
ments with different head constructor are non convertible no matter what the
evaluation of their respective subterms is.

Definition A term in weak-head form is either a term with a constructor in
head position (weak-head normal form) or the elimination of a variable (weak-
head neutral form). No restrictions are imposed unto the shape of the rest of
the term.

pr : σ P Γ

‘v pr : Γ $whne σ

f : Γ $whne σ ‘Ñ τ x : Γ $ σ

f ‘$ x : Γ $whne σ

t : Γ $whne σ ‘̂ τ

‘π1 t : Γ $whne σ

f : Γ $ σ ‘Ñ τ xs : Γ $whne ‘list σ

‘mappf, xsq : Γ $whne ‘list τ

t : Γ $whne σ ‘̂ τ

‘π2 t : Γ $whne τ

xs : Γ $whne ‘list σ ys : Γ $ ‘list σ

xs ‘̀ ` ys : Γ $whne ‘list σ

c : Γ $ σ ‘Ñ τ ‘Ñ τ n : Γ $ τ xs : Γ $whne ‘list σ

‘foldpc, n, xsq : Γ $whne τ

Table 2.1: Inductive definition of the weak-head neutral forms

t : Γ $whne σ

‘Ò t : Γ $whnf σ

t : Γ ¨ σ $ σ
‘λ t : Γ $whnf σ ‘Ñ τ

pipo

‘xy : Γ $whnf ‘1

a : Γ $ σ b : Γ $ τ
a ‘, b : Γ $whnf σ ‘̂ τ

pipo

‘rs : Γ $whnf ‘list σ

hd : Γ $ σ tl : Γ $ ‘list σ
hd ‘:: tl : Γ $whnf ‘list σ

Table 2.2: Inductive definition of the weak-head normal forms

Each Γ $whne σ or Γ $whnf σ trivially corresponds to a term Γ $ σ. We’ll
either leave these coercions implicit or talk about the erasure of a weak-head
term. The weakenings induced by context inclusions will be either left implicit
or written wkinc where inc is the inclusion proof when judged necessary.

2.1 Defining a model

Unlike full normalization, weak-head normalization is very adamant about
never doing more than is needed: whenever possible, the procedure will be-
have just like the identity function e.g. when building the spine of arguments
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applied to a variable. As a consequence, elements of the model built need
to have a mean to mention their origins. The adopted solution is inspired
by Coquand and Dybjer’s glueing[10] allowing the algorithm to forget about
reductions which were not supposed to happen

The structure of this model definition highlights the semantical nature of
the process: at the end of the day, reductions are all about explaining how to
eliminate weak-head normal forms.

Definition x. , .yü. is a predicate transformer used to define the model: it
limits recourses to live objects in places where the runtime behavior of the term
may reveal useful. We call this operator a gluer.

xΓ , σyüR “ Γ $ σ ˆ
ě Γ $whne σ

Γ $whnf σ ˆR

Definition The weak-head model Mwh is defined as a glueing on a mutu-
ally defined acting model M‹

wh essentially explaining how to eliminate terms.
Mwh’s definition is parametric in the type index: it contains a well-typed
term (the one the normalization procedure started from) packed with either a
weak-head neutral or a weak-head normal together with a semantical object
explaining how to compute with it.

MwhpΓ, σq “ xΓ , σyüM‹
whpΓ, σq

On the other hand, the elements of the acting model M‹
wh are defined

by induction on the target type. Quite unsurprisingly semantical units and se-
mantical inhabitants of base types do not contain any information1, semantical
pairs are pairs, semantical functions are functions, etc.

M‹
whpΓ, . q : typen Ñ Set

M‹
whpΓ, σ q ð type-inductionpσq

M‹
whpΓ, ‘1 q “ J

M‹
whpΓ, ‘b k q “ J

M‹
whpΓ, σ ‘̂ τ q “ MwhpΓ, σq ˆMwhpΓ, τq

M‹
whpΓ, σ ‘Ñ τ q “ @∆ Ě Γ,Mwhp∆, σq ÑMwhp∆, τq

M‹
whpΓ, ‘list σ q “ L‹whpΓ, σ, λΓ ÑMwhpΓ, σqq

where L‹wh is an inductive set describing semantical lists; it is basically a
list of semantical objects where the tail of a cons is always encapsulated in a
gluer.

Γ: Conptypenq σ : typen

,σ : Conptypenq Ñ Set

L‹whpΓ, σ,,σq : Set
‘rs : L‹whpΓ, σ,,σq

HD : ,σ pΓq TL : xΓ , ‘list σyüL‹whpΓ, σ,,σq
HD ‘:: TL : L‹whpΓ, σ,,σq

1It is indeed unsurprising: the calculus is completely silent on the matter of base types so
the only way to build inhabitants of one such type is through the use of variables hence the
creation of weak-head neutrals. Quite straightforwardly, there is no need for an explanation
on how to eliminate weak-head normals of base type.
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It should be noted that this inductive definition is parametric in its argu-
ments which guarantees that there is no positivity problem when building the
model.

Remark For a given type σ the models behave like functors for the cate-
gory of contexts and inclusions. In other words: weakenings do exist and the
appropriate identities hold.

Lemma 2.1.1 (Reify and reflect). It is possible to extract weak-head normals
Γ $whnf σ from the model MwhpΓ, σq as well as inject weak-head neutrals
Γ $whne σ in it.

Proof. From this model, it is trivial to extract a weak-head normal form: the
glueing provides either a term already in weak-head normal form or a weak-head
neutral which we can lift using the ‘Ò constructor. We note Òσ the type-indexed2

function performing this operation.
It is as simple to inject a weak-head neutral t into the model: the first

component will be the erasure of t and the second will simply be the left
injection of t. We note Óσ the corresponding type-indexed function2.

These model definitions (and the corresponding weakenings) can be natu-
rally extended pointwise to pairs of contexts. This give rise to the notion of
semantical environments noted Mεwh. Thanks to Óσ and environment weak-
ening, one can define the canonical inhabitant of the diagonal environment
MεwhpΓ,Γq by a trivial induction on Γ.

2.2 Interpreting terms in this model

Once the model is set up, it is left to prove that terms can be immersed in
the model were computations will happen before reification brings back nor-
mal forms. In order not to go crazy when proving soundness later on, it is
wise to give this evaluation function as much structure as possible. This is
done through a multitude of intermediate lemmas explaining the semantical
counterparts of the usual notions of the calculus.

Let’s walk through the definition of the interpretation of map over lists in
the model. Variable lookup, projections of a tuples’ components, fold, etc.
can all be given semantical counterparts following the scheme described here
without any particular difficulty.

Remark The semantical counterpart of a term of the calculus will be using the
same name except that it will be suffixed with a prime e.g. the interpretation
of ‘map is ‘map1.

Lemma 2.2.1 (Semantical application). Mwh is closed under application;
i.e. from every pair MwhpΓ, σ ‘Ñ τq ˆMwhpΓ, σq, one can build an object of
MwhpΓ, τq.

2 These functions are not really type-indexed but their counterpart for the full-
normalization algorithm are. In order to have coherent notations, we stick to mentioning the
type.
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Proof. Let pf, F q and px,Xq respectively be the objects in MwhpΓ, σ ‘Ñ τq
and MwhpΓ, σq. Because the first component of Mwh should always be the
term the reduction started from, it will be f ‘$x. The second component is
built by case analysis on F .

If F is the left injection of some weak-head neutral fwhne then fwhne ‘$x
also is a weak-head neutral hence ι1pfwhne ‘$xq is of the appropriate type.

If F is the right injection of a pair pfwhnf , F
‹q then F ‹ is an object of

M‹
whpΓ, σ ‘Ñ τq i.e. a function producing elements of Mwhp , τq. Returning

the second projection of F ‹pidĎpΓq, px,Xqq concludes the proof.

Lemma 2.2.2 (Semantical ”cons”). There is a concept similar to cons for lists
in the model: given a head MwhpΓ, σq and a tail MwhpΓ, ‘list σq, one can
build a list MwhpΓ, ‘list σq.

Proof. Let phd,HDq be the head and ptl, TLq be the tail. The term t “
hd ‘:: tl is a weak-head normal Γ $whnf ‘list σ and T “ phd,HDq ‘:: ptl, TLq
is an element of the action model M‹

whpΓ, ‘list σq whence the well-typed se-
mantical object corresponding to the consing of the head on the tail: pt, ι2pt, T qq.

Lemma 2.2.3 (Semantical map). Given a semantical functionalMwhpΓ, σ ‘Ñ τq,
one can define its mapping over a semantical list MwhpΓ, ‘list σq outputing
another semantical list MwhpΓ, ‘list τq.

Proof. Let pf, F q be the functional and pxs,XSq be the list. The first compo-
nent of the returned MwhpΓ, ‘list τq will be ‘mappf, xsq. The second one is
defined by case analysis on XS.

If XS is the left injection of some weak-head neutral xswhne then the stuck
map ‘mappf, xswhneq is a neutral and its left injection is of the expected type.

If XS is the right injection of a pair pxswhnf , XS
‹q then we proceed by

induction on the semantical object XS‹ of type M‹
whpΓ, ‘list σq.

• If XS‹ is the empty list then mapping F over it should just yield the
empty list

• If XS‹ is HD ‘:: 1 TL then the induction hypothesis provides Y S, the
result of ‘map1ppf, F q, TLq. Combining it with pf, F q ‘$

1
HD using the

semantical cons ‘:: 1 builds just the needed term3.

After describing how the expected behaviour of each term constructor can
be explained in terms of actions on the elements of the model, all these can
be combined in order to show that terms can be embedded in Mwh given an
embedding of their free variables.

Theorem 2.2.4 (Evaluation function). Given a term t of type Γ $ σ and a
semantical environmentMεwhp∆,Γq, there exists a semantical object T of type
Mwhp∆, σq.

3Up-to an additional Γ $ ‘list τ which is discarded by taking the second projection of
the result.
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Proof. Let R be the semantical environment Mεwhp∆,Γq. The proof is done
by structural induction on t using either the semantical operations described
earlier in order to combine the induction hypothesis or looking up a term in the
environment in the variable case. The only case left is the lambda abstraction
one.

‘λ t is a weak-head normal form thus the need for anM‹
whpΓ, σ ‘Ñ τq object

T to build the MwhpΓ, σ ‘Ñ τq element p‘λ t, ι2p‘λ t, T qq. Given E a context,
inc an inclusion proof ∆ Ď E and X a semantical objectMwhpE, σq, one has
to build a MwhpE, τq element. By combining X with an inc weakening of R,
one can get a semantical environment MεwhpE,Γ ¨ σq which, together with t,
produces the required element by induction hypothesis.

Corollary 2.2.5 (Weak-head normalization). From each term of type Γ $ σ,
one can derive a weak-head normal term Γ $whnf σ.

Proof. By combining the evaluation function, the existence of diagonal ele-
ments inMεwh and the weak-head normal forms extractor Òσ, one can immerse
t in MwhpΓ, σq and then extract a corresponding Γ $whnf σ. This weak-head
normalization function is called wh-norm.

2.3 Reassuring oneself

The typing information provided by the implementation language guarantees
that the procedure computes terms in weak-head normal forms from its inputs
and that they have the same type. This is undoubtly a good thing to know
but does not forbid all the potentially harmful behaviours: the empty list is a
type correct weak-head normal form for any input of type list but it certainly
is not a satisfactory answer with respect to βηι equality. Hence the need for a
soundness theorem tightening the specification of wh-norm.

Its role is to formalize the intuition mentionned when building Mwh: the
first component is the term the reduction procedure started from and the ele-
ments of the active model are reducts of the weak-head normal they are glued
to. The first result can be proved by a simple induction on t.

Lemma 2.3.1. The first component of the evaluation of t in the environment
R is t where the substitution ρ pulled4 from R has been applied.

Proof. By induction on t using trivial lemmas for each semantical operator
described earlier on.

In order to prove the second part of the informal specification, a logical
relation is needed: knowledge about the behaviour of a function is acquired
when evaluating a lamda abstraction but is used when applying it ; the same
goes for e.g. pairings and projections. Given that the active model is only used
in the presence of weak-head normals, the relation will connect such weak-
head normals to the live objects. The reader will therefore understand that it
is preferable to start by explaining once and for all how to lift such a relation
through a gluer.

4The first component of a semantical object MwhpΓ, σq is a term Γ $ σ thence the
possibility to build up a substitution ∆ $ε Γ from a semantical environment Mεwhp∆,Γq by
taking the first projection of all of its elements.
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Definition Given a logical relation RΓ,σ relating weak-head normal forms
Γ $whnf σ to elements of R, one can lift it along the gluer in the following
fashion: let pt, T q be an element of xΓ , σyüR.

if T is the left injection of a weak head neutral element twhne then the
requirement is t *

βηι twhne;
if T is the right injection of a pair ptwhnf , T

‹q containing a weak head
normal term and an element of R then the requirement is that t *

βηι twhnf
and RΓ,σptwhnf , T

‹q.

Definition The structure of the logical relation (denoted  whp.qp.q) follows
closely the model’s one. It is defined on Mwh as the lifting along the gluer of
the one defined on the acting model M‹

wh which, itself, is built by induction
on the index type σ:

M‹
whpΓ, σq . Q .  ‹wh : Γ $whnf σ ÑM‹

whpΓ, σq Ñ Set

M‹
whpΓ, σq t Q T  ‹wh ð type-inductionpσq

In the unit as well as the base type case, there is no need for an information
transfer given that for these types all the semantical objects in the active model
M‹

whpΓ, .q are identical. Our only requirement is therefore a proof of the trivial
proposition:

M‹
whpΓ, ‘1q Q  ‹wh “ J

M‹
whpΓ, ‘b kq Q  ‹wh “ J

In the product case, the semantical object is actually a pair pA,Bq of semantical
objects corresponding to the left and the right components of the product. One
should require that the weak-head normal form reduces to the pairing of the
source elements of these two semantical objects and that this two semantical
objects are themselves well-behaved.

M‹
whpΓ, σ ‘̂ τq Q p  ‹wh A,B “ p *

βηιpπ1A, π1Bq ˆ  whpσqpAq ˆ  whpτqpBq

In the function case, one expects every well-behaved input to be turned into a
well-behaved output. In addition, one should mention that the first component
of the output could be anything above (in terms of the reduction relation) the
simple application of terms.

M‹
whpΓ, σ ‘Ñ τq Q f  ‹wh F “

@p∆ : Conptypenqqpinc : ∆ Ě ΓqpX :Mwhp∆, σqqpX :  whpσqpXqq

py : ∆ $ τq Ñ y *
βηι f ‘$π1X Ñ  whpτqpy, π2pF pinc,Xqqq

Finally the list case is handled by an auxiliary definition, once again, parametric
in its arguments.

M‹
whpΓ, ‘list σq Q xs  

‹
wh XS “ L‹whpΓ, σ,,σq Q xs  XS by p whpσqp.qq

Given a predicate ,σ wh : @Γ,,σpΓq Ñ Set morally caracterizing the ele-
ments of ,σpΓq that are well-behaved, one can build the logical relation relating
a weak-head normal term xswhnf of type Γ $whnf ‘list σ and a semantical
list XS of type L‹whpΓ, σ,,σq by induction on XS.

if XS is the empty list then the requirement is that the weak-head normal
form computes down to the empty list.
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if XS is a non empty list HD ‘:: 1 TL then one expects the weak-head
normal form to reduce to the non empty list built from the source elements
of HD and TL. On top of that, HD should be well-behaved5 and the gluer’s
extension of the induction hypothesis for TL should hold.

The first thing to notice is that proving that the evaluation function pro-
duces terms which agree with the logical relation is enough to prove soundness.
The reification of a term for which the logical relation holds is indeed a reduct
of its first component:

Proposition 2.3.2.  whpσqpt, T q implies that t *
βηι Òσpt, T q.

Proof. Trivial by case analysis on T .

The evaluation function is structured around combining the semantical
counterparts of the term constructors together with semantical objects ob-
tained via induction hypothesis. It should therefore be possible to build the
soundness proof in a modular fashion: if every semantical construct preserves
the logical relation’s validity then the whole evaluation process must be sensi-
ble.

One of the common practices in the definition of these semantical operators
is to drop the first component of an object to replace it with the term we really
started from. In other words: if the validity of the logical relations is to remain
true throught the use of these operators, it has to be upward-closed under the
reduction relation.

Lemma 2.3.3 (Closures). M‹
whpΓ, σq Q .  

‹
wh T and  whpσqp., T q are upward-

closed with respect to the reduction relation.

Proof. This can be proved by a simple case analysis on σ followed by a case
analysis on T in the list case forM‹

whpΓ, σq Q .  
‹
wh T and a simple case analysis

on T for  whpσqp., T q.

Let’s walk through the proof that map is indeed correct. We call well-
behaved the elements T of the model MwhpΓ, σq for which  whpσqpT q holds.
The proofs are all done by functional induction i.e. by following the way the
semantical operator was defined.

Lemma 2.3.4 (Semantical application). Given a well-behaved function in
MwhpΓ, σ ‘Ñ τq and a well-behaved argumentMwhpΓ, σq, their semantical ap-
plication is also well-behaved.

Proof. Let pf, F q be the well-behaved functional and px,Xq be the correspond-
ing argument. The functional induction on the semantical application distin-
guishes two cases:

Either F is the left injection of some weak-head neutral fwhne where f *
βηι fwhne

holds by hypothesis. The proof requirement for the corresponding semantical
application is f ‘$x *

βηι fwhne ‘$x which is trivially discharged by structural
lifting of the hypothesis.

Or F is the right injection of the pairing of a weak-head normal form
fwhnf and an element of the action model F ‹. f ‘$x *

βηι fwhnf ‘$x trivially

5Meaning that ,σ whpΓ, HDq should hold.
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holds because of the structural rule for application and one of the hypothesis
given by the fact that pf, F q is well-behaved. Combined with the fact that
M‹

whpΓ, σ ‘Ñ τq Q fwhnf  ‹wh F holds and that px,Xq is well-behaved this
concludes the proof.

Lemma 2.3.5 (Semantical cons). The semantical consing of a well-behaved
head and tail yields a well-behaved list.

Proof. Let phd,HDq be the head and ptl, TLq be the tail. The proof is done
by case analysis on TL: in both cases the things to prove are either trivial or
assumptions.

Lemma 2.3.6 (Semantical map). The semantical map preserves the property
of being well-behaved.

Proof. Let pf, F q be the function and pxs,XSq the list. The functional induc-
tion distinguishes three cases.

Either XS is the left injection of a stuck term xswhne and proving the goal
amounts to combining the assumption about pxs,XSq and the structural rule
for the second argument of ‘map.

Or XS is the right injection of an xswhnf and the empty semantical list.
Then by assumption xs *

βηι xswhnf and xswhnf *
βηι ‘rs hence by structural

rules and ι for map, ‘mappf, xsq *
βηι ‘rs.

OrXS is the right injection of an xswhnf and the semantical consHD ‘:: 1 TL.
By induction hypothesis, ‘map1ppf, F q, TLq is well-behaved and by lemma 2.3.4,
pf, F q ‘$

1
HD is well behaved. Hence ppf, F q ‘$

1
HDq ‘:: 1 ‘map1ppf, F q, TLq is

also well-behaved. Finally because ‘mappf, xsq *
βηιpf ‘$π1HDq ‘:: ‘mappf, π1 TLq

and being well-behaved is closed under βηι expansion of the first term, one can
finish the proof.

Theorem 2.3.7. The evaluation function is well-behaved provided that the
semantical environment used is.

Proof. Let t be the term and R be the well-behaved environment. All the cases
can be dealt with by fitting together inductions hypotheses and the auxiliary
lemmas proved earlier except for the lambda abstraction. In the case of the
lambda abstraction t “ ‘λ b, the induction hypothesis ensures that for ∆ an
extension of Γ andX well-behaved inMp∆, σq, evalpb, pR,Xqq is well-behaved.

Recall that the first component of an evaluation is the evaluated term where
free variables have been substituted by terms pulled from the semantical envi-
ronment. Let’s call ρ the substitution pulled fromR whence the first component
of evalpb, pR,Xqq is brρ, π1Xs which is a direct reduct of p‘λ bqrρs ‘$pπ1Xq thus
the conclusion of the proof by upward closure of the logical relation.

Corollary 2.3.8 (Soundness). For all term t of type Γ $ σ, t reduces by βι
to the erasure of wh-norm t.

Proof. Óσ quite trivially produces well-behaved elements of the model ; more-
over semantical weakening is compatible with the logical relation thence the
diagonal semantical environment is well-behaved and, by the preceding theo-
rem, evalpt, diagpΓqq is well-behaved.
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As a consequence, lemma 2.3.2 and the fact that pullpdiagpΓqq is the
identity substitution ensure that t *

βηι wh-norm t.



normalization and standardization

Normalization and standardization of lambda terms can be of different in-
terests, our original motivation is to get a more liberal definitional equality
relieveing the mathematician’s shoulder of at least part of the proof burden
they have to endure when certifying a program correct. But it can also be used
as a compilation technique to compute away expressions which are statically
known (as explained by e.g. Danvy[13]) or optimize list traversals by fusioning
different steps (as presented by e.g. Hinze et al.[15]).

The more liberal definitional equality we want shoudl still be decidable
given that, when extending the calculus to dependent types, such a test will
be required by any typechecker. In order to be able to decide equality up-to
the equational theory, one has to have a mean to extract canonical represen-
tatives of the equivalence classes. These representatives are the normal and
neutral forms described here and they are picked thanks to a normalization by
evaluation algorithm.

The soundness and completeness proofs ensure that the representatives are
unique and that the algorithm never pairs up a term with the representative
of a different class.

Definition Neutral and normal forms are mutually defined so that they cannot
possibly contain β or ι redexes: neutrals represent stuck eliminations while
normals specify canonical shapes for terms depending on the type they have.

pr : σ P Γ

‘v pr : Γ $ne σ

f : Γ $ne σ ‘Ñ τ x : Γ $nf σ

f ‘$ x : Γ $ne σ

t : Γ $ne σ ‘̂ τ

‘π1 t : Γ $ne σ

t : Γ $ne σ ‘̂ τ

‘π2 t : Γ $ne τ

c : Γ $nf σ ‘Ñ τ ‘Ñ τ n : Γ $nf τ xs : Γ $ne ‘list σ

‘foldpc, n, xsq : Γ $ne τ

Table 3.1: Inductive definition of the neutral forms

t : Γ $ne ‘b k

‘Ò t : Γ $nf ‘b k

t : Γ ¨ σ $nf σ

‘λ t : Γ $nf σ ‘Ñ τ

pipo

‘xy : Γ $nf ‘1

a : Γ $nf σ b : Γ $nf τ

a ‘, b : Γ $nf σ ‘̂ τ

pipo

‘rs : Γ $nf ‘list σ

hd : Γ $nf σ tl : Γ $nf ‘list σ

hd ‘:: tl : Γ $nf ‘list σ

f : Γ $nf σ ‘Ñ τ xs : Γ $ne ‘list σ ys : Γ $nf ‘list τ

mappendpf, xs, ysq : Γ $nf ‘list τ

Table 3.2: Inductive definition of the normal forms

15



16 CHAPTER 3. NORMALIZATION AND STANDARDIZATION

Each Γ $ne σ or Γ $nf σ trivially corresponds to a term Γ $ σ. We’ll
either leave these coercions implicit or talk about the erasure of a weak-head
term. The weakenings induced by context inclusions will be either left implicit
or written wkinc where inc is the inclusion proof when judged necessary.

3.1 Computing

The model designed to achieve full normalization and standardization is both
simpler and more complex than the one crafted to produce weak-head forms: a
glueing is not required here given that no computation will ever be cancelled but
there is need for more complex semantical lists. Indeed, standardization cares
about stuck maps or appends and needs to somehow store their computational
power and be ready to fire some more reductions when rewriting fusion rules
creating new redexes. Hence the following definition by induction on the type.

Definition The calculus enjoys η rules both for unit, product and arrow type
thence the absence of subtlety in the model definition: all the semantical units
are units, the semantical pairs are pairs of semantical objects and the semanti-
cal functions are functions on semantical objects. The fact that base types do
not have canonical constructors is also reflected by their semantical interpre-
tation being plain neutrals.

MpΓ, σ q ð type-inductionpσq
MpΓ, ‘1 q “ J

MpΓ, ‘b k q “ Γ $ne ‘b k
MpΓ, σ ‘̂ τ q “ MpΓ, σq ˆMpΓ, τq
MpΓ, σ ‘Ñ τ q “ @∆ Ě Γ,Mp∆, σq ÑMp∆, τq
MpΓ, ‘list σ q “ LpΓ, σ, λΓ ÑMpΓ, σqq

where LpΓ, σ,,σq is and inductive definition parametric in its arguments:

Γ: Conptypenq σ : typen ,σ : Conptypenq Ñ Set

LpΓ, σ,,σq : Set

‘rs : LpΓ, σ,,σq
HD : ,σpΓq TL : LpΓ, σ,,σqs

HD ‘:: TL : LpΓ, σ,,σq
f : @∆ Ě Γ,∆ $ne τ Ñ,σp∆q xs : Γ $ne ‘list τ Y S : LpΓ, σ,,σq

mappendpf, xs, Y Sq : LpΓ, σ,,σq

where mappendpf, xs, Y Sq intuitively means ‘mappf, xsq ‘̀ ` Y S for a stuck xs
and in which only the vital information1 about f has been stored.

Lemma 3.1.1 (Reify and reflect). Mutually defined processes allow normal
forms Γ $nf σ to be extracted from elements of the modelMpΓ, σq while neutral
forms Γ $ne σ can be turned into elements of the model.

1The vital information being its behaviour on variables which is just enough to be able
to compute compositions and to trigger the reification mecanism. Note that this voluntary
limitation to neutrals in the domain is not the result of an ascetic whim; it is absolutely
impossible to have a well-founded definition of the model and live objects in semantical
stuck maps: τ is nowhere related to ‘list σ.
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Proof. Both Òσ : MpΓ, σq Ñ Γ $nf σ and Óσ : Γ $ne σ ÑMpΓ, σq are defined
by induction on their type index σ.

The unit case is trivial: the reification process returns ‘xy while the reflection
one produces the only inhabitant of J.

Ò‘1 “ ‘xy Ó‘1 “ tt

The base type case is solved by the embedding of neutrals into normals on
one hand and by the identity function on the other hand.

Ò‘b kt “ ‘Ò t Ó‘b kt “ t
The product case is solved by induction hypothesis: the reification is the

pairing of the reification of the subterms while the reflection is the reflection
of the η-expansion of the stuck term.

Òσ ‘̂ τ pA,Bq “ pÒσA, ÒτBq Óσ ‘̂ τ t “ pÓσ ‘π1 t, Óτ ‘π2 tq
The function case is obtained by η-expansion both at the term level (the

normal form will start with a λ) and the semantical level (the object will be
a function). It is here that the fact that the definitions are mutual is really
important.

Òσ ‘Ñ τF = ‘λpÒτF psteppidĎq, Óσ ‘v 0qq
Óσ ‘Ñ τf = λ∆ inc x.Óτ pwkincpfq ‘$ Òσxq

The list case is dealt with by recursion on the semantical list for the reifi-
cation process and a simple injection for the reflection case:

Ò‘list σ ‘rs “ ‘rs
Ò‘list σ HD ‘:: TL “ pÒσHDq ‘:: pÒ‘list σTLq
Ò‘list σ mappendpf, xs, Y Sq “ ‘mapp‘λpÒσpfp‘v 0qqq, xsq ‘̀ ` pÒ‘list σY Sq

Ó‘list σxs “ mappendpÓσ, xs, ‘rsq

Proving that every term can be normalized now amounts to proving the
existence of an evaluation function producing a term T of the model Mp∆, σq
given a well-typed term t of the language Γ $ σ and a semantical environment
Mεp∆,Γq. Indeed the definition of the reflection function Óσ together with
the existence of environment weakenings give us the necessary machinery to
produce a diagonal semantical environmentMεpΓ,Γq which could then be fed
to such an evaluation function.

Unlike the involved construction needed for weak-head normalization, this
model is quite straightforward to inhabit. The reader can refer to Dybjer[10]
or Coquand[9] if she wants to have an idea of how to interpret the usual con-
structors while we will focus on the original content of this paper: lists and
their special reduction rules.

Lemma 3.1.2 (Semantical map). From a semantical functional inMpΓ, σ ‘Ñ τq
and a semantical list in MpΓ, ‘list σq, one can build a semantical list in
MpΓ, ‘list τq.

Proof. Let F be the functional and XS be the list; the mapping of F on XS
is defined by induction on XS:

• If XS is empty, so is the output;
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• If XS is HD ‘:: 1 TL, one applies F to HD and produces a tail corre-
sponding to ‘map1pF, TLq by induction hypothesis;

• If XS is a stuck map-append mappendpG, xsne, TLq then the result is
also a stuck map-append combining the composition of F with G and
the induction hypothesis:

mappendpλinc.λxne.F pinc,Gpinc, xneqq, xsne, ‘map
1
pF, TLqq

Lemma 3.1.3 (Semantical append). From two semantical lists inMpΓ, ‘list σq,
one can build the list corresponding to appending the second one at the end of
the first one.

Proof. Let XS and Y S be the two semantical lists, the result is built by in-
duction on XS.

• If XS is empty then appending Y S at its end amounts to returning Y S;

• If XS is equal to HD ‘:: 1 TL then TL ‘̀ ` 1 Y S is given by induction
hypothesis and the output is HD ‘:: 1pTL ‘̀ ` 1 Y Sq;

• If XS is mappendpF, xsne, TLq then the output is combining the induction
hypothesis giving TL ‘̀ ` 1 Y S in a way that exploits associativity of
append: mappendpF, xsne, TL ‘̀ ` 1 Y Sq

Lemma 3.1.4 (Semantical fold). One can build a semantical counterpart to
the fold function.

Proof. Let C and N respectively be the elements in MpΓ, σ ‘Ñ τ ‘Ñ τq and
MpΓ, τq and XS be the semantical list inMpΓ, ‘list σq. As usual the output
is defined by induction on XS.

• If XS is empty, one returns N ;

• If XS is HD ‘:: 1 TL, one returns CpHD, ‘fold1pC,N, TLqq;

• If XS is a stuck mappendpF, xsne, TLq then one has to perform fold-
append fusion as well as fold-map fusion. Given that xsne is a neutral,
the only way to actually produce a MpΓ, τq is through reflection of a
neutral. Hence the following construction:

First of all, build c1 : Γ $nf σ ‘Ñ τ ‘Ñ τ the reification of the com-
position of C and F : ‘λ ‘λpÒτCppr, F ppr, ‘v 1q, idĎpΓq, Óτ ‘v 0qq where pr

is the trivial proof of Γ Ď Γ ¨ σ ¨ τ ;

Then get n1 by reifying the induction hypothesis: Òτ ‘fold1pC,N, TLq

And finally use reflection on the stuck fold to build the element of
the model: Óτ ‘foldpc1, n1, xsneq

Theorem 3.1.5 (Evaluation function). Given a term in Γ $ σ and a seman-
tical environment in Mεp∆,Γq, one can build a semantical object in Mp∆, σq.
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Proof. Simple induction on the term to be evaluated using the previous lemmas
to actually perform the operations in the semantical model.

Corollary 3.1.6 (Normalization). For all term t of type Γ $ σ, one can
compute a normal form tnf in Γ $nf σ. The corresponding function is called
norm.

Proof. The evaluation of t in the canonical diagonal environment yields a se-
mantical object T which can then be reified using Òσ.

3.2 Meta-theory

The meta-theory is an ad-hoc extension of the techniques already well explained
by Catarina Coquand[9] in her presentation of a simply-typed lambda calculus
with explicit substitutions (but no data). Soundness is achieved through a
simple logical relation while completeness needs two mutually defined notions
explaining what it means for elements of M to behave uniformly and to be
(extensionally) equal.

Theorem 3.2.1 (Soundness). For all term t of type Γ $ σ, t reduces by βηι
to the erasure of norm t.

The soundness proof is here omitted ; it is obviously quite similar to the one
for the weak-head normalization procedure while being simpler because of the
model storing less information. The proof that this normalization is complete
with respect to the equational theory induces by the reduction relation is far
more interesting.

Completeness can be summed up by the fact that the interpretation of
βηι convertible elements produces semantical objects behaving similarly. This
notion of similar behaviour is formalized as extensional equality where the
domain of the function is limited to uniform elements rather than any element
of the model. As usual the list case is dealt with by using an auxiliary definition
parametric in its ”interesting” arguments.

Setting up logical relations

The reader should think of these logical relations as specifying requirements
for a characterization (being equal, being uniform) to be true of an element
at some type. The natural deduction style presentation of these recursive
functions should then be quite natural for her: read in a bottom-top fashion,
they express that the conjunction of the hypotheses – the empty conjunction
being J – is the requirement for the goal to hold. Hence leading to a natural
interpretation:

A B C
F ptq

 F ptq “ AˆB ˆ C

Definition The extensional equality of two elements T,U ofMpΓ, σq is written
T ”σ U while T PMpΓ, σq being uniform is written Uniσ T . They are both
mutually defined by induction on the index σ.
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Quite unsurprisingly, the unit case is of no interest: all the semantical units
are equivalent and uniform.

T ”‘1 U Uni‘1 T
Semantical equality for elements with base types is purely syntactical: in-

habitants are just bits of data (neutrals) which can be compared using the
propositional equality. They are always uniform.

T ” U
T ”‘b k U Uni‘b k T

In the product case, the semantical objects are actual pairs and the defini-
tion just forces the properties to hold for each one of the pair’s components.

A ”σ C B ”τ D

pA,Bq ”σ ‘̂ τ pC,Dq

Uniσ A Uniτ B

Uniσ ‘̂ τ pA,Bq
The function type case is a bit more hairy. While extensionality on uniform

arguments is simple to state, uniformity has to enforce a lot of invariants:
application of uniform objects should yield a uniform object, application of
extensionally equal uniform objects should yield extensionally equal objects
and weakening and application should commute (up to extensionality).

@∆pinc : Γ Ď ∆qpS : ∆ $ σq Ñ Uniσ S Ñ F pinc, Sq ”τ Gpinc, Sq

F ”σ ‘Ñ τ G

@pinc : ∆ Ě Γq, Uniσ S Ñ Uniτ F pinc, Sq

@pinc : ∆ Ě Γq Ñ Uniσ S1 Ñ Uniσ S2 Ñ S1 ”σ S2 Ñ F pinc, S1q ”τ F pinc, S2q

@inc1, inc2 Ñ Uniσ S Ñ wkinc1 F pinc2, Sq ”τ F pinc2 ¨ inc1, wkinc1 Sq

Uniσ ‘Ñ τ F

In the ‘list σ case, extensional equality is an inductive set basically build-
ing the (extensional) diagonal relation on lists of the same type. It is, not
suprinsingly, parametrized by a relation EQσ on terms of type Mp∆, σq (for
any context ∆) which is, in the practical case instantiated with . ”σ . as one
would expect.

XS : MpΓ, ‘list σq Y S : MpΓ, ‘list σq
EQσ : @∆,Mp∆, σq ÑMp∆, σq Ñ Set

XS ”‘list
σ Y S : Set

‘rs : ‘rs ”‘list
σ ‘rs

hd : EQσpX,Y q tl : XS ”‘list
σ Y S

hd ‘:: tl : X ‘:: XS ”‘list
σ Y ‘:: Y S

xs : xs1 ” xs2 Y S : Y S1 ”
‘list
σ Y S2

f : @pinc : ∆ Ě Γqpt : ∆ $ne τq Ñ EQσpF1pinc, tq, F2pinc, tqq

mappendpf, xs, Y Sq : mappendpF1, xs1, Y S1q ”
‘list
σ mappendpF2, xs2, Y S2q

Uniformity is, on the other hand, defined by recursion on the semantical
list. It could very well be defined as being parametric in something behaving
like Uniσ . but this is not necessary: there are no positivity problems! It is
therefore probably better to stick to a lighter presentation here. The empty
list indeed is uniform.

Uni‘list σ ‘rs “ J
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A constructor-headed list is said to be uniform if its head of type MpΓ, σq is
uniform and its tail also is uniform.

Uni‘list σ HD ‘:: TL “ Uniσ HD ˆ Uni‘list σ TL

The criterion for a stuck list is a bit more involved. Mimicking the definition of
uniformity for functions, there are two requirements on the stuck map: applying
it to a neutral yields a uniform element of the model and application and
weakening commute. Lastly the second argument of the stuck append should
be uniform too.

Uni‘list σ mappendτ pF, xs, Y Sq =
@pinc : ∆ Ě Γqpt : ∆ $ne τq, Uniσ F pinc, tq

ˆ @inc1, inc2, t, wkinc1 F pinc2, tq ”σ F pinc2 ¨ inc1, wkinc1 tq
ˆ Uni‘list σ Y S

Remark The reader will notice that p. ”σ .qσPtypen is a family of equivalence
relations. Additionally, she will not have any problem extending these relations
in a pointwise fashion to environments as well as checking that all these notions
are compatible with weakening.

Proving completeness

Recall that the completeness theorem was presented as expressing the fact that
elements equivalent with respect to the reduction relation were interpreted as
semantical objects behaving similarly. For this approach to make sense, know-
ing that two semantical objects are extensionally equal should immediately
imply that their respective reifications are syntactically equal. Which is the
case.

Theorem 3.2.2. If S ”σ T holds then the reifications of S and T are identical.
This theorem is proved mutually with two lemmas:

• the reflection of a neutral object is always uniform

• weakening and reification commute for uniform objects

Proof. A simple induction on the type σ of the expressions at hand is enough
for this proof to go through.

Now that we know that all the theorem proving ahead of us will not be
meaningless, we can start actually proving completeness. When applying an
extensional function, it is always required to prove that the argument is uni-
form. Being able to certify the uniformity of the evaluation of a term is therefore
of the utmost importance.

Lemma 3.2.3. Evaluation in uniform environments produces uniform values.
This result is proved mutually with two lemmas:

Evaluation in semantically equivalent environments produces semantically
equivalent values.

Weakening the evaluation of a term is equivalent to evaluating this term in
a weakened environment.
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Proof. This is proven by induction on the element being evaluated. Introducing
intermediate lemmas to deal with the helper functions in a modular manner is
a good idea.

Following the evaluation function’s definition, one should prove that com-
bining extensionally equal terms using semantical combinator such as append
or map yields extensionally equal terms. This will prove useful when trying to
prove equal the evaluation of two related terms whose convertibility proof is
using structural rules.

Lemma 3.2.4. If s and t are two terms in Γ $ σ such that s βηι t and
if R is a uniform environment in Mεp∆,Γq then the evaluation of s in R is
extensionally equal to the one of t in R.

Proof. One proceeds by induction on the proof that s reduces to t.

Structural rules The case of the structural rule for lambda can be dis-
charged quite simply by an induction hypothesis: indeed a weakened uniform
environment is still uniform and the element provided by the extensional equal-
ity relation at an arrow type is assumed to be uniform.

The left structural rule for application is trivially discharged by combining
the induction hypothesis with lemma 3.2.3 which guarantees that the applied
value is indeed uniform. The right structural one works the other way around:
the uniformity of the evaluation of the functional part precisely says that appli-
cation of uniform terms which are extensionally equal (induction hypothesis)
yiels semantically equal terms thus proving the goal.

The structure itself of the call graph of T ”σ U on product types guaran-
tees that structural rules for pair formers can be discharged by a combination
of reflexivity and induction hypothesis while structural rules for projections
are taken care of by projecting the appropriate component of the induction
hypothesis.

The structural rules for append, map and fold are dealt with by putting
together reflexivity proofs and the induction hypothesis using the proofs that
these semantical operations yield extensionally equal terms when fed with such
kinds of objects.

βι rules Each one the ι rules holds by reflexivity of the extensional equality,
indeed evaluation realizes these computation rules syntactically. The case of
the β rule is slightly more complicated. Given a function ‘λ b and its argument
x, one starts by proving that the diagonal semantical environment extended
with the evaluation of x in R is extensionally equal to the evaluation in R of the
diagonal substitution extended with x. Thence, knowing that the evaluations
of a term in two extensionally equal environments are extensionally equal, one
can see that the evaluation of the redex is related to the evaluation of the
body in an environment corresponding to the evaluation of the substitution
generated when firing the redex. Finally, the fact that eval and substitution
commute (up-to-extensionality) lets us conclude.
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η rules Eta rules definitely are the most complicated ones: except for the
ones for product and unit types which can be discharged by reflexivity of the
semantical equality, all of them need at least a little bit of theorem proving to
go through. The map-id, map-append, append-nil and append-assoc rules can
be proven using simple auxiliary lemmas proved by functional induction.

Theorem 3.2.5 (Completeness). For all terms t and u of type Γ $ σ, if t–βηιu
then norm t “ normu.

Proof. Reflection produces uniform values and uniformity is preserved through
weakening hence the fact that the trivial diagonal environment is uniform.
Combined with iterations of the previous lemma along the proof that t–βηιu,
we get that the respective evaluations of t and u are extensionally equal which
we have proved to be enough to get syntactically equal reifications.

Corollary 3.2.6 (Decidability of –βηι). For all terms t and u of type Γ $ σ,
t–βηιu is decidable.

Proof. Equality of normal and neutral forms is a simple syntactical problem.
Soundness and completeness give means to link (counter)proofs of equality of
normal forms to (counter)proofs of βηι equality of the initial terms.

Remark Proving decidable the propositional equality of normal forms is quite
cumbersome in Agda. This could be facilitated by the existence of some kind
of deriving mecanism for inductive definition. See 5.2 for a modest example of
what can be achieved thanks to the internalization of data-type descriptions
and the meta-programming it allows.



a tactics for agda

Showing that the calculus’ equational theory is compatible with Agda’s one
surely is a simple enough sanity check guaranteeing that the chosen definitions
somehow make sense1 but it can also be seen as a way to automatically come
up with proofs of equality in Agda; in other words: a tactics.

4.1 Embedding of the calculus in Agda’s one

Definition Every finite type in our calculus has an Agda counterpart given
that a valuation ρ of its base types is available. We note J . K . this operation
of type typen Ñ VecnSetÑ Set defined by induction on its typen argument:

J σ K ρ ð type-inductionpσq
J ‘b k K ρ “ ρ !! k
J ‘1 K ρ “ J

J σ ‘̂ τ K ρ “ J σ K ρˆ J τ K ρ
J σ ‘Ñ τ K ρ “ J σ K ρÑ J τ K ρ
J ‘list σ K ρ “ List pJ σ K ρq

This definition is extended to contexts in a pointwise manner thus giving
the operation J . Kε . of type Conptypenq Ñ VecnSetÑ Set.

Theorem 4.1.1 (Existence of an embedding). From any term t of type Γ $ σ,
one can build an embedding r t s of t in Agda which produces a J σ K ρ when
fed with a J Γ Kε ρ.

Proof. Straightforward by induction on the structure of t.

This embedding is trivially extended to parallel substitutions ts of type
∆ $ε Γ in a pointwise fashion. We note r . sε this translation.

Theorem 4.1.2 (Soundness of the reduction relation). In Agda + Functional
Extensionality2 terms of type Γ $ σ convertible in the source language, when
embedded in Agda and fed with the same J Γ Kε ρ, evaluate to propositionally
equal objects.

Proof. Let s and t be two terms of type Γ $ σ such that s βηι t, let R be a
realiser of the environmentna J Γ Kε ρ. The proof that r s spRq ” r t spRq is by
induction on the shape of the proof that s βηι t.

The structural rules are dealt with quite easily combining the induction
hypotheses with the appropriate congruence rules. The only tricky case is the
structural rule allowing reductions under ‘λs where functional extensionality is
needed.

1Indeed if a non-sensical proof can be built in our calculus then this construction guar-
antees that it translates down to one in Agda which would be most regrettable.

2We are forced to use extensionality because we are identifying under binders terms that
are only equal propositionally e.g. we consider that λxs Ñ mappidA, xsq ” idListA which is
not provable in core Agda.
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The ι rules are similarly non-problematic: the embedding of a ι redex and
its reduct are exactly equal thus allowing the case to be discharged by invoking
the propositional equality’s reflexivity.

On the other hand β reduction is not trivially correct: one has to prove a
more general commutation lemma relating the application of a substitution to a
term and its evaluation in an environment basically consisting of the embedding
of the substitution: r trρs spRq ” r t spr ρ sεpRqq.

Only two of the standardization rules (also called η rules) are discharged
by invoking the reflexivity of the propositional equality (namely the ones for
types ‘1 and ‘̂ ). Almost all the ones mentioning lists necessitate nothing
more than a simple induction following the reduction behaviour of the functions
involved (be it either map, fold or append). The only three remaining cases
are map fusion, fold-map fusion and η-expansion of functions.

η-expansion of functions is dealt with by using functional extensionality
in order to apply a more general lemma: the translation of a weakened term
in an environment R amounts to the translation of the original term in an
environment R1 equal to R purged of all the realizers of types added to the
context by the weakening.

In the case of (fold-)map fusions, a simple induction can prove the result on
semantical objects, the only missing step being a commutation lemma between
composition at the term level and composition after embedding. It is proven by
combining with functional extensionality two instances of the lemma described
in the η-expansion case.

Corollary 4.1.3 (Existence of a tactics). For all terms lhs and rhs of type
Γ $ σ and for all valuation ρ of their base types and R of their free variables,
the following proposition can be discharged automatically whenever it holds:

r lhs spRq ” r rhs spRq

Proof. A trivial structural induction on two terms’ convertibility derivation
using the previous theorem 4.1.2 provides us with a proof that whenever s–βηιt
holds then so does r s spRq ” r t spRq.

The convertibility test described in corollary 3.2.6 allows us to decide if
s–βηιt is provable. Depending whether it holds or not, one can ask the user to
provide either a (trivial) proof of J or a proof of K hence always being able to
discharge the goal.

This tactics is called solve and is invoked with s, t, ρ, R and tt thus letting
Agda either typecheck the term and discharge the goal whenever it is provable
or complain that tt is not of type K otherwise.

Example Let swap be the function transforming pairs of type A ˆ B into
pairs of type BˆA. It can be represented in our calculus by the term ‘swap “
‘λp‘π2 ‘v 0 ‘, ‘π1 ‘v 0q of principal type Γ $ σ ‘̂ τ ‘Ñ τ ‘̂ σ for any Γ, σ and
τ .

Then for any A and B : Set and any list xs of Aˆ B pairs, one can prove
that mappswap, mappswap, xsqq ” xs holds true by simply invoking the solver:

solvep‘mapp‘swap, ‘mapp‘swap, ‘v 0qq, ‘v 0, rA,Bs
loomoon

ρ

, ptt, xsq
looomooon

R

, ttq



exotic alternatives

Looking for new models with appropriate reduction behaviours is a non-trivial
problem and when designing a candidate hopefully producing a simple and
bug-free formalization, one is bound to explore a throng of alternatives which
end up being discarded.

The few ones presented here are odd birds taken from this bunch. They
were not cultivated enough to become full-blown developments like the main
subject of this presentation but the concepts they are based on are interesting
enough to deserve being articulated if only once.

5.1 Baking is fun

The Kripke-style semantics M is structured very similarly to the way the log-
ical relation implying soundness is built. It is therefore possible to bake the
logical relation’s invariant in the model itself thus guaranteeing the evaluation
function to be written sound by construction. When interacting with Agda,
this provides the developper with a more secure working environment: instead
of implementing functions ultimately proven correct, his effort is driven by the
typechecker giving instantaneous feedback on his code. And once the algo-
rithm is implemented, there is no need for a mathematician’s analysis proving
the algorithm sound a posteriori.

The modified model is obtained by enriching the semantical objects with
well-typed terms (called decorative terms1) which are, intuitively, terms the
semantical objects are reducts of. As a consequence, this construction has a
Kripke flavor with respect to two parameters: it is upward closed under context
extension but also under βι-expansion and η-contraction of decorations.

Definition The definition of this decorated model highlights the differences

with the usual one by putting the refinements in red boxes . The model is

indexed by a context Γ, a type σ and a well-typed term t : Γ $ σ . It is
defined by induction on the type:

MpΓ, σ , t q ð type-inductionpσq
MpΓ, ‘1 , q “ J

MpΓ, ‘b k , t q “ ptne : Γ $ne ‘b kq ˆ t *
βηι tne

MpΓ, σ ‘̂ τ , p q “ pa : Γ $ σq ˆ pb : Γ $ τq ˆ p *
βηιpa, bq ˆ

MpΓ, σ, a q ˆMpΓ, τ, b q
MpΓ, σ ‘Ñ τ , f q “ @∆ Ě Γ, @px : ∆ $ σq , @y *

βηι f ‘$x Ñ

Mp∆, σ, x q ÑMp∆, τ, y q
MpΓ, ‘list σ , xs q “ LpΓ, σ,,σ, xs q

where LpΓ, σ,,σ, xs q is and inductive definition parametric in its argu-
ments which definition is based on the one of the simpler model:

1It is not an accident that their name is similar to McBride’s ornaments[18] given that
both of them are refinement of an existing structure. The formal connection is however yet
to be made formal.
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,σ : p∆: Conptypenqq Ñ ∆ $ σ Ñ Set xs : Γ $ ‘list σ

LpΓ, σ,,σ, xs q : Set

xs *
βηι ‘rs

‘rs : LpΓ, σ,,σ, xs q
xs *

βηι hd ‘:: tl

HD : ,σ pΓ, hd q

TL : LpΓ, σ,,σ, tl qs

HD ‘:: TL : LpΓ, σ,,σ, xs q

xs *
βηι ‘mappf, tsq ‘̀ ` ys

ts : Γ $ne ‘list τ Y S : LpΓ, σ,,σ, ys q

F : @∆ Ě Γ, pt : ∆ $ne τq Ñ,σ p∆, f ‘$ t q

mappendpf, F, ts, Y Sq : LpΓ, σ,,σ, xs q

Proposition 5.1.1 (Closure). The model is closed under expansion of the
decorative term with respect to the reduction relation.

Proof. By a simple induction on the type followed by a case analysis on the
term in the list case.

Because the model now internalizes some of the proofs, it is not possible to
write the pair reify / reflect on its own anymore. Let us recall the σ ‘Ñ τ case
for Óσ in the non decorated case:

Óσ ‘Ñ τf “ λ∆ inc x.Óτ pwkincpfq ‘$ Òσxq

In the decorated case, one has to take care of an extra y which reduces to
the application of f to the decoration of x. It calls for the use of the closure
lemma 5.1.1 to cast the recursively built application of f to the reification of x.
But at this point in time there’s no information available on the relationship
between x’s decoration and the value obtained by reifying x.

The solution is to not only build two functions by mutual induction but
rather three of them: reflection, reification and the proof that reification yields
a reduct of the decoration.

Lemma 5.1.2 (Coherent reify and reflect). Mutually defined processes al-
low normal forms xnf : Γ $nf σ to be extracted from elements of the model
MpΓ, σ, xq such that x *

βηι xnf while neutral forms xne : Γ $ne σ can be turned
into elements of the model MpΓ, σ, xneq.

Proof. The construction is done by induction on the type σ in a fashion very
similar to the versions working on the non decorated models.

Limitations

One does get soundness for free by internalizing the logical relation but all
of this has a cost: extra casts are inserted all over the place at evaluation
time! This makes the equational reasoning involved in proving completeness
far more tedious ; indeed before actually reaching the interesting bits of the
values mentionned, one has to deal with all these coercions first.



28 CHAPTER 5. EXOTIC ALTERNATIVES

5.2 A language for describing datatypes

Using a universe of description for indexed datatypes, it is possible to design
some kind of deriving mecanism simplifying the proofs that equality is decidable
for the terms of a given datatype. Noticing that the decidability of –βηι for
our calculus relies on the decidability of the propositional equality for normal
and neutral forms, it gives a quite good opportunity to test the usability of
such a system.

Here is the grammar used to define the class of strictly positive functors used
in this example as well as the interpretation function building the corresponding
I to Set functor.

I : Set
DescI : Set1

J . K : DescI Ñ pI Ñ Setq Ñ I Ñ Set

i : I d : DescI
recpi, dq : DescI

Jrecpi, dqKpR, jq “ Rpiq ˆ JdKpR, jq

i : I
retpiq : DescI

JretpiqKpR, jq “ i ” j

d1 : DescI d2 : DescI

d1 ‘Z d2 : DescI
Jd1 ‘Z d2KpR, jq “ Jd1KpR, jq Z Jd2KpR, jq

A : Set dA : pa : Aq Ñ DescI

‘ΣpA, dAq : DescI
J‘ΣpA, dAqKpR, jq “ pa : Aq ˆ JdApaqKpR, jq

A datatype ‘µ d with only one constructor then gives the mean to take the
fixpoint of such a functor:

d : DescI i : I

‘µ xd, iy : Set

t : JdKpλi.‘µ xd, iy, iq
inptq : ‘µ xd, iy

Reconstructing the inductive datatypes used

To keep this example short and readable, we are going to focus on a simply-
typed calculus with a base type. Dagand proved in his paper on elaboration
of datatypes declaration to codes[11] that this description-based approach is
versatile enough to allow more complex systems to be encoded.

Contexts ConpAq of elements in A are either empty or the combination of
a head pa : Aq and a tail ConpAq. Their are not indexed thus the use of unit
as the set of indices:

ConpAq “ ‘µ x‘Z
ret tt

‘ΣpA, λ . recptt, ret ttqq
, tty

Using Andjelkovic and Gundry’s patterns[5], we can recover a syntax mim-
icking the presence of constructors for these different datatypes: unlike other
definitions, patterns can be used on the left hand side of an equation. ε will
stand for conpι1reflq while Γ ¨ σ will mean conpι2pσ,Γ, reflqq.

The membership predicate is indexed by a context Γ: ConpAq and is para-
metric in A and an element a : A. It is defined as either here if a is the head
of Γ or there if a is further down the context. The subscript A will be omitted
whenever possible.
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a PA Γ “ ‘µ x‘Z
‘ΣpConpAq, λΓ. retpΓ ¨ aq
‘ΣpConpAq ˆA, λpΓ, bq. recpΓ, retpΓ ¨ bqqq

,Γy

A type type is either a base type or an arrow type composed of two types:
the domain and the codomain of the arrow. There is no need for indexing here
either.

type “ ‘µ x‘Z
ret tt

recptt, recptt, ret ttqq
, tty

A term Γ $ σ is indexed by a context Γ and a type σ. It can either be:
A variable i.e. a context, a type and a proof that this type belongs to that

context:
var “ ‘ΣpConptypeq ˆ type, λpΓ, σq. ‘Σpσ P Γ, λ . retpΓ, σqqq
A lambda abstraction i.e. a context, two types and a body of the right type

given the extended context:
lam “ ‘ΣpConptypeqˆtypeˆtype, λpΓ, σ, τq. recppΓ ¨ σ, τq, retpΓ, σ ‘Ñ τqqq
The application of a function to an argument i.e. a context, two types, a

functional and and argument whose type matches the functional’s domain:
app “ ‘ΣpConptypeqˆtypeˆtype, λpΓ, σ, τq. recppΓ, σ ‘Ñ τq, recppΓ, σq, retpΓ, τqqqq
Hence the following description for terms:

Γ $ σ “ ‘µ x‘
ě

var
lam
app

, pΓ, σqy

The description of neutral and normal forms is quite similar to the one of
terms except for one subtlety: these definitions are mutual. This is solved by,
first, defining a set with two distinct elements (ne and nf, called tags) and then
use these tags as indices restricting the shape an expression can have.

The definition of the normalization by evaluation is then absolutely identical
to the one where datatypes are declared in a more classical way. The only
difference being that decidability of syntactical equality comes more or less for
free for all the structure used.

Limitations

There are no real limitations here except the fact that, unlike in Epigram[8],
these concepts are not internalized in Agda. As a consequence, the way the
goals of an unfinished proof are displayed is quite appalling which makes it
painful to work on.

5.3 A calculus with a universe of datatypes

As demonstrated in the previous section, it is possible to describe the notion
of inductive definition in a calculus by using codes for polynomial functors
and interpreting them as such. This extension of the calculus with datatypes
is compatible with building a normalization by evaluation procedure. In this
section we limit ourselves to skeletons i.e. datatypes with no parameters or
indices but the reader should be able to extend all the results to (at least)
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datatypes equipped with parameters. During this formalization she may find
Agda’s complaints about termination painfully recurrent ; inlining a couple of
definitions usually solves the problem.cite supercompilation as

a proof of termination
cite supercompilation as
a proof of termination In addition to the machinery used to represent the simply-typed lambda

calculus, one introduces descriptions as a new inductive definition and functor
applications and fixpoints as new type formers.

d : Desc ::“ ‘1 | d1 ‘̀ d2 | d1 ‘̂ d2 | ‘X

d : Desc
‘µ d : typen

d : Desc σ : typen

Fr d s σ : typen

Then one has to add new constructors for terms allowing to build inhabi-
tants of a functor or eliminate them. The sum of two functors is here used as
an example of such rules:

p1 : Γ $ Fr d1 s σ

‘ι1pd2, p1q : Γ $ Fr d1 ‘̀ d2 s σ

p2 : Γ $ Fr d2 s σ

‘ι2pd1, p2q : Γ $ Fr d1 ‘̀ d2 s σ

f1 : Γ $ Fr d1 s σ ‘Ñ τ f2 : Γ $ Fr d2 s σ ‘Ñ τ

‘`-elimpf1, f2q : Γ $ Fr d1 ‘̀ d2 s σ ‘Ñ τ

Finally the addition of a fold operator and a map lifting functions on func-
tors 2 gives this small language an expressive enough core.

f : Γ $ σ ‘Ñ τ x : Γ $ Fr d s σ

‘mappf, xq : Γ $ Fr d s τ

alg : Γ $ Fr d s σ ‘Ñ σ x : Γ $ ‘µ d

‘foldpalg, xq : Γ $ σ

The model definition is then quite similar to the one for our main calculus:
it is defined by induction on the type index and functors applied to a type are
dealt with in an inductive definition parametric in its arguments. The only
way to lift a neutral inhabitant of a functor being to either use η-expansion
(e.g. in the case of a product) or a stuck map.

2Notice that when adding parameters to the datatypes, one can define another map
function: the one acting on the parameters rather than on the variable of the polynomial
functor!



future work

6.1 Relax the structural constraints of the model

The current model for full-normalization as well as the definition of normal
forms exhibit artifacts characteristic of the arbitrary choice that was made
when picking a representative of the equivalence classes (e.g. right-nesting
of appends ending with and empty list, map-id expansions on neutrals). It
would be nicer to have relaxed notions of normal forms and semantical lists
and simplify away these right units, or identity mapping rather than adding
them.

6.2 Quoting machinery for the tactics

In the current implementation of the solver (see chapter 4 – A tactics for Agda),
the reification of the goal one is trying to prove has to be performed by hand
which can be quite tedious and is of no particular interest to the programmer.
This work should be assigned to the machine rather than the user.

In his Msc. thesis on reflection in Agda, Paul van der Walt describes a reifi-
cation algorithm for a simply-typed lambda calculus ([21], Chapter 5) which
could probably be adapted to our use case. He proceeds in two consecutive
steps: the first one building raw terms annotated with type information in
crucial places (i.e. at binding time) using the quotation mechanism and the
second one extracting a well-typed term from a raw one. It currently neces-
sitates patching Agda’s reification mechanism to insert these extra pieces of
information.

6.3 Extending the calculus

Be it either in terms of supported equational theories, or in terms of complexity
of the type system, this experiment should be pushed further. Partial solutions
for both of these problems already exsits:

Atkey’s Foveran implements monad laws for indexed descriptions[20].
Normalization by evaluation already has been extended in some ways to

Martin-Löf type theories by Abel and al.[2, 3] but these presentations say
nothing about data let alone richer equational theories.
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